
SC04 - 8x8 LED Dot Matrix Addon Card for SXI & SXII

 1

The 8x8 LED dot matrix displays give an introduction
into how to program things such as moving message
displays (these same 8x8 matrix units are used in such
displays) and LCD dot matrix displays.

This Kit allows the connection of one or two displays to
be connected to the CN1 I/O connector of the Southern
Cross computer. A wide range of program examples are
provided on the software in SC04.ZIP which you can
download from the software download page of

http://www.quasarelectronics.com/software.htm

Provision has been made on the PCB so that the display
may be separated from the drive circuit and the two parts
connected by flat ribbon cable. Extra rows of pads and
holes are on the board for this purpose. For example, you
may join two displays together and have a moving
message scrolling across the two of them. In this case the
circuitry can be located a few inches behind or near them.

Construction. Check all the components provided in the
Kit against the Component Listing. There are eleven links
to add to the board. The first thing to watch during
construction is the way the 8x8 display is mounted. The
white notch in the centre of one of the plastic sides on the
back of the display goes to the top of the board. This
notch is shown on the overlay. The writing on the side of
the display module points to the IDC connector at the
bottom of the board.

The second thing to take care about is the construction of
the 16 pin IDC cable. When you press the components
together to make the cable use a vice to deliver even
pressure across the connector as you press the pieces
together. When you finish inspect the pins closely to be
sure that each pin is connected to the cable strand that it
is supposed to go to. It is rather easy when doing hand
construction of these cables to find one pin has gone in
skew and is shorting between two adjacent V-pins. Make
sure that pin 1 at one end of the cable goes to pin 1 at the
other end, and not pin 16.

Components:
10uF electrolytic capacitor 1
74HC273 2
UDN2981 1
ULN2803A 1
18 pin IC socket 2
20 pin IC socket 2
8 LED display 1
DPDT PCB-mounted switch 1
16 pin box header 1
16 pin IDC socket & holder 2
16 strand flat cable 10"
8x8 Display PCB, SC04 1
Hook-up wire 10"

To check that the board is working the Southern Cross
monitor has a kaleidoscope program built into it. Put the
switch in the up position. This will connect the two

latches on the board to ports 80H & 82H. Press Function
E. (To remind you - press the Reset key, then the Fn
key then the 'E' key.) A pattern of randomly generated
symmetric images should appear on the display. This will
continue until Reset is pressed.

What to do if it does not work
Check the orientation of the ICs and electrolytic
capacitor. Check the cable & cable connections. Is the
display in the correct way, notch to the top

How it Works
Two latches IC1 and IC2 are connected to the Data Bus of
the Southern Cross through the I/O port. Each latch can
be addressed by different I/O addresses which are selected
by the DPDT switch. There are a total of four port
addresses to choose from. They are 80h,81h,82h and 83h.
A PCB mounted DPDT switch switches the latches
between two sets of port addresses (one for the x axis of
the display and the other for the y axis.) One display uses
ports 80h & 82h and the other uses ports 81h & 83h. This
means that two LED display boards can be connected
on the one 16 pin cable. On one board the switch is put
into the up position. And on the other the switch is put in
the down position.

The Y axis latch outputs (IC1, 74HC273) are connected to
the common anodes of the LED matrix through a source
driver (IC4, UDN2981A). Similarly the X axis latch (IC2,
74HC273) is connected to the common cathodes of the
LED display through a sink driver (IC3, ULN2803A).
The X latch is also connected to the system Reset to
ensure LED's are not lit when the latches are first
powered up or the system is Reset.

Background. Persistence of Vision. When you see the
TV picture of a TV picture you must have noticed how
badly the illustrated screen flickers. This is because a TV
picture is never all 'on' at the same moment of time. It is
being rewritten 50 times a second by a moving trace. The
image you see on the TV screen persists on the retina of
your eye so your brain think it is seeing a continuous
image over the whole screen. When you see a TV screen
of a TV screen the latter screen is not being scanned this
way so it flickers badly. Another example is at the picture
theatre; 24 pictures are flashed on the screen each second.
Because each image stays on your retina for a time the
gradually changing images blend into each other so you
get the impression of moving pictures.

This same scanning effect is used in the 8x8 display. In
this way complex patterns like moving messages can be
displayed. In the kaleidoscope program each LED seems
to be on all the time, but it is not. It is only turned on for
only 15 micro-seconds every 500 micro-seconds (half
a milli-second.) This is duty cycle of 3% (Pulse
width/period x 100/1.) When the LED is on it draws 70
mA but the average current drawn is only 2 mA
(Iav = (Pulse width x Ipeak)/Period.) This is called
multiplexing the display. Multiplexing is also used to
turn on the six displays on the Southern Cross. This was
discussed in Chapter 7 of the Users Manual.) As the
continuously rated current of the LEDs is only 30mA and

http://www.quasarelectronics.com/software.htm

SC04 - 8x8 LED Dot Matrix Addon Card for SXI & SXII

 2

we are allowing up to 70mA to flow you risk destruction
of the LEDs in the display if you allow the LEDs to be
turned on continuously.

When we use the SCAND subroutine only one row of
LED's is on at any one instant of time. Because the
average current drawn by the LED's is only 2mA no
current limiting resistors are required by the circuit.

Multiplexing techniques use the persistence of vision
effect to allow the display of complex messages. There is
no reason to turn on continuously the LEDs in the display
when they only have to be turned on 3% of the time to
achieve the exactly same effect.

Programming the 8x8. We could start out by turning one
LED on continuously then expanding the examples to turn
on several LEDs. However, such examples lead nowhere
since the normal way to program the 8x8 displays is by
multiplexing for the reasons just discussed. The first
example displays the letter A using a system call 16 to the
Monitor. (For a discussion of system calls see Ch. 7 of the
Users Manual.)

Multiplexing the 8x8 can be done in several ways. The
SKATE subroutine we will use now (the one in the
Monitor) is one way. Another way is shown later. In
SKATE one row of 8 LEDs is scanned at a time. The
LEDs to be turned on in that row are given by the bit
pattern of the 8 positions. A bit pattern of 10000001 (or
81h) will turn on the outer two LEDs. A pattern of
11111111 (FFh) will turn them all on.

To program this the byte representing the top row is
stored in the register pair HL. HL+1 stores the byte for
the second row from the top, HL+2 the byte for row 3 etc.
See Figure 1 and the method will be immediately
apparent. We can conveniently use system call 16 to
scan the 8x8 display rather than reinvent the wheel and
write our own code. An example will show this more
clearly.

Using a piece of paper form the letter A of your choice
using the 8x8 matrix. We decided on 18, 24, 42, 42, 42,
7E, 7E & 42 as follows:

00011000 =18h
00100100 =24h
01000010 =42h
01000010 =42h
01000010 =42h
01111110 =7Eh
01111110 =7Eh
01000010 =42h

Do you see the capital A outlined by the 1's and how to
derive the hex byte representing the 0 & 1 pattern? Hand
enter these bytes into locations 2000h to 2007h of the
Southern Cross. Next enter the code in Table 1 on the
next page at 2100h then do Fn 0.

You should have the letter A displayed on the 8x8. (If not
move the switch to address the other pair of ports.)If you

do not like its font then change it in the buffer at 2000h.
Eg, change the first 2 bytes to 00,3C. That may look
better to you.

Again this example has demonstrated how using the
subroutines in the Monitor greatly simplifies code
development and reduces time. Just 4 lines of code have
put the contents of the 8 byte buffer on the display. Add
some bit shift instructions, delays and a bigger message
buffer and you can move a message across the screen. Or
you can develop a maze game. Examples of each of these
types of programs have been supplied on the floppy disk
which accompanies this Kit. We present the programs
here as further examples for you to study and to learn
from. The complete code with comments for each
program has been supplied. Download the hex file using
the serial download method discussed in Chapter 8 of the
Users Manual.

Maze Game. Maze is a simple maze program that should
keep you amused for some time as you struggle to find
the exit from this LED labyrinth. Best of all, once you
have mastered it you can design your own to impress your
friends! The program is written so that any size maze can
be designed. All you need is the patience to code it.

Use the flashing LED 'cursor' to move around the maze in
search of the flashing exit LED. The 2,5,7,A diamond will
move the cursor. The Fn key will exit from the maze and
take you back to the Monitor. Move your cursor anywhere
there is not a LED 'wall'. As you move the cursor off the
display another view is presented. If the cursor will not
move off a view it means that there is a wall blocking you
in the next view. Move the cursor onto the flashing exit
LED to reveal your reward. Press any key to return to the
monitor.

A description of how the maze game works and how you
can design your own, bigger maze is contained in a text
file on the floppy disk. Try to write the maze so that

Figure 1. Port, Memory Buffer Location & Hex
Coordinates.

SC04 - 8x8 LED Dot Matrix Addon Card for SXI & SXII

 3

scrolling is smooth rather than jumping an 8x8 unit at a
time (one direction is harder to program than the
other.)

2100 21 00 20 LD HL,2000h ;point HL to buffer
2103 0E 16 LD C,16H ;system call SKATE
2105 F7 RST 30H ;call it
2106 C3 00 21 JP 2100h ;repeat the loop

Scrolling Message Display. Message is a 'running
message display' program which will display a variable
length message across two 8x8 units. System calls are not
used but the displays are multiplexed. A different method
of character encoding is used to that presented above.

Note a limitation of the z8t assembler has shown up in
this example. The object code in the lookup table in the
prn file output is only 4 bytes long. It does not show the
fifth byte. It is in the hex output of course but not in the
prn file output.

Characters are stored in a 5x7 character fonts matrix. All
upper case letters, numerals and a range of special
characters have already been coded and placed in the
lookup table. It is left as an exercise for you to add the
lower case letters to this table. Let us look how characters
are stored in the table.

A 5x7 character matrix is used. Here is an example for the
small letter a:

1 2 3 4 5 Byte number 1 2 3 4 5
 (0 0 0 0 0) This row all zeros
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 0 1
0 1 1 1 1 2 5 5 5 F
1 0 0 0 1 h h h h h
0 1 1 1 1 LSB

Character encoding is done in columns (since it is easier
to program the scrolling movement.) To translate the
above diagram into byte values mentally divide each
column into two halves. The lower 4 bits make up the
lower nibble and the upper 4 (with the extra row added)
make up the higher nibble.

Using the binary to hex table on the right-hand side of the
Southern cross keyboard find the corresponding hex digit
of both halves. Do the top half first and write down the
hex digit. Now do the bottom half and write down that
hex digit to the right of the first. Repeat this process for
all 5 columns. This process should be done from left to
right and the resultant bytes recorded in the same order.
The bytes are summarized on the right of the bit table
above.

They are: Byte 1 02H
 Byte 2 15H
 Byte 3 15H
 Byte 4 15H
 Byte 5 0FH

or '021515150F' when put into consecutive locations in
the lookup table. Once you see how to do it it is easy.

Look at the last line in the lookup table at 2300h and you
will see that 'a' is the last character entered in it. It is an
exercise for you to add b, c, d ... z into the table after it.

Naturally the characters of any language or any symbols
can be formed and stored in the above fashion. (An 8x8
character matrix may be better than the 5x7 one.)

Let us return to the running display program. The
message to be displayed is converted into standard ASCII
code either manually (that is, you do it) or a PC does it for
you automatically. In the latter case all you do is enter the
message in plain english into the .z8t file at 2400h and use
the PC to assemble it for you. Of course you cannot enter
symbols for which you have not defined the font! The
first part of the program translates to ASCII codes of the
message into groups of 5 bytes from the lookup table. All
the bytes are transferred to a display buffer. The second
part of the program scans the bytes onto the 8x8 displays
and moves them across the displays. The method of
moving the characters is interesting. Four pointers are set
up and moved through the display buffer creating a new
scanning starting point each time the display is to be
shifted.

The program is fully commented. Try to understand the
logic of how it works. It is very easy to see exactly how
the program runs using the Southern Cross. Remember
the hardware speed control? Move the jumper or switch to
S)low. Adjust the potentiometer so the display is going
slowest. You should be able to see how the program
operates by looking at the displays. Each character is
scanned repeatedly in a fixed position. Then all the
characters move one LED position to the left. Move the
pot to the fastest scanning and see what happens. Then
move the switch to F)ast. The scanning of the characters
in the fixed position is now so fast you do not see it. All
you see are the letters moving across the screen. So by
using the hardware speed control you have been able to
see 'inside' the program, something you normally
have to deduce logically by looking at the program flow
chart.

Three 8x8 Displays. We have designed this 8x8 add-on
board so that 1 or 2 boards may easily be attached to the
CN1 I/O Port of the Southern Cross. The switch is up for
one board, and down for the other. However, with minor
hardware modifications three 8x8 displays may be
attached. Port 80h, for example, may go the the Y latch of
all three boards while ports 81h, 82h and 83h go to the X
latches of each board respectively. The program
3_8x8.z8t on the floppy disk will run 3 8x8 displays. To
drive more than three 8x8 displays you will have to use
the 40 pin IDC socket CN3 and decode the port addresses

Table 1. System call to Output Display Routine.

SC04 - 8x8 LED Dot Matrix Addon Card for SXI & SXII

 4

for yourself. The basis of a large, say 2x30 8x8 unit
moving display has now been discussed in principle.
Time and date information is available if you use the
DS1216C smartWatch. Can you write a program to
display this information on a moving display? There are
many possibilities open to you

Conclusions. The 8x8 add-on board opens up the real
world of programming. The essential interface output
circuit between any computer and the outside world is
found on the 8x8 Display Board. Whether you are driving
a printer (magnetic print hammers), relay board
(solenoids) or 8x8 display the basic circuit is taking a low
power digital logic signal from an output Port of the
computer and latching it (in the 74HC273) to a driver chip
or transistor.

(Documentation September 11, 2002.)

- - - - - - - - - - - - -

