INTRODUCTION
The LM340-XX are three terminal 1.0A positive voltage regulators, with preset output voltages of 5.0V or 15V. The LM340 regulators are complete 3-terminal regulators requiring no external components for normal operation. However, by adding a few parts, one may improve the transient response, provide for a variable output voltage, or increase the output current. Included on the chip are all of the functional blocks required of a high stability voltage regulator; these appear in Figure 1.

FIGURE 1. Functional Block of the LM340
The error amplifier is internally compensated; the voltage reference is especially designed for low noise and high predictability; and, as the pass element is included, the regulator contains fixed current limiting and thermal protection. The LM340 is available in either metal can TO-3 or plastic TO-220 package.

1. CIRCUIT DESIGN
Voltage Reference
Usually IC voltage regulators use temperature-compensated zeners as references. Such zeners exhibit BV > 6.0V which sets the minimum supply voltage somewhat above 6.0V. Additionally they tend to be noisy, thus a large bypass capacitor is required.

FIGURE 2. Simplified Volt Reference
Figure 2 illustrates a simplified reference using the predictable temperature, voltage, and current relationship of emitter-base junctions.

Assuming $J_{Q1} > J_{Q2}$, $I_{CQ2} > I_{BO2} = I_{BO3}$, Area (emitter Q1) = Area (emitter Q2), and

$V_{BEQ1} = V_{BEQ2}$

then

$V_{REF} = \frac{kT}{q} \ln \left(\frac{R_2}{R_1} \right) R_2 + V_{BEQ3}$

Simplified LM340
In Figure 3 the voltage reference includes R1–R3 and Q1–Q5. Q3 also acts as an error amplifier and Q6 as a buffer between Q3 and the current source. If the output drops, this drop is fed back, through R4, R5, Q4, Q5, to the base of Q3. Q7 then conducts more current re-establishing the output given by:

$V_{OUT} = V_{REF} \frac{R_4 + R_5}{R_4}$
Complete Circuit of the LM340 (Figure 4)

Here \(I_{Q2}, I_{Q3} \) and a positive TC \(\Delta V_{BE} \) appears across R6. This is amplified by 17, \((R6/R6 - 17) \) and is temperature compensated by the \(V_{BE} \) of Q6, Q7, Q8 to develop the reference voltage. R17 is changed to get the various fixed output voltages.

Short Circuit Protection

A) \(V_{IN} - V_{OUT} < 6.0 \text{V} \): There is no current through D2 and the maximum output current will be given by:

\[
I_{OUT MAX} = \frac{V_{BEQ14}}{R16} = 2.2 \text{A (} T_j = 25 \text{C)}
\]

(1-4)

B) \(V_{IN} - V_{OUT} > 6.0 \text{V} \): To keep Q16 operating within its maximum power rating the output current limit must decrease as \(V_{IN} - V_{OUT} \) increases. Here D2 conducts and the drop across R16 is less than \(V_{BE} \) to turn on Q14. In this case \(I_{OUT} \) maximum is:

\[
I_{OUT MAX} = \frac{1}{R16} \left(V_{BEQ14} - \left[(V_{IN} - V_{OUT}) - V_{ZD2} - V_{BEQ14} \right] \frac{R13}{R13} \right)
\]

\[
= 0.077 \left[37.2 - (V_{IN} - V_{OUT}) \right] (A)
\]

at \(T_j = 25 \text{C} \)

\[
(R13/R13 - 40) \cdot 37/2
\]

(1-5)

FIGURE 3. LM340 Simplified

FIGURE 4. Complete Circuit of the LM340
Thermal Shut Down
In Figure 4 the V_{BE} of Q13 is clamped to 0.4V. When the die temperature reaches approximately +175°C the V_{BE} to turn on Q13 is 0.4V. When Q13 turns on it removes all base drive from Q15 which turns off the regulator thus preventing a further increase in die temperature.

Power Dissipation
The maximum power dissipation of the LM340 is given by:

$$P_{D_{\text{MAX}}} = (V_{\text{IN MAX}} - V_{\text{OUT}}) I_{\text{OUT MAX}} + V_{\text{IN MAX}} I_{Q} \text{ (W)}$$ \hspace{1cm} (1-6)

The maximum junction temperature (assuming that there is no thermal protection) is given by:

$$T_{J_{\text{MAX}}} = \frac{36 - 13 I_{\text{OUT MAX}} - (V_{\text{IN}} - V_{\text{OUT}})}{0.0855} + 25 \text{°C} \hspace{1cm} (1-7)$$

Example:

$$V_{\text{IN MAX}} = 23V, I_{\text{OUT MAX}} = 1.0A, \text{LM340T-15}.$$

Equation (1-7) yields: $T_{J_{\text{MAX}}} = 200^\circ\text{C}$. So the $T_{J_{\text{MAX}}}$ of 150°C specified in the data sheet should be the limiting temperature.

From (1-6) $P_{D_{\text{MAX}}} = 8.1W$. The thermal resistance of the heat sink can be estimated from:

$$\theta_{J-S} = \frac{T_{J_{\text{MAX}}} - T_{A}}{P_{D_{\text{MAX}}}} - (\theta_{J-C} + \theta_{C-S}) \text{ (C/W)} \hspace{1cm} (1-8)$$

The thermal resistance θ_{J-C} (junction to case) of the TO-220 package is 6°C/W, and assuming a θ_{C-S} (case to heat sink) of 0.4, equation (1-8) yields:

$$\theta_{J-S} = 8.4^\circ\text{C/W}$$

2. CURRENT SOURCE
The circuit shown on Figure 5 provides a constant output current (equal to V_{OUT}/R_{f} or 200 mA) for a variable load impedance of 0 to 85Ω. Using the following definitions and the notation shown on Figure 5, Z_{OUT} and I_{OUT} are:

$$Q_{CC}/V = \text{Quiescent current change per volt of input/output (pin 1 to pin 2) voltage change of the LM340}$$

$$L_{1}/V = \text{Line regulation per volt: the change in the LM340 output voltage per volt of input/output voltage change at a given I_{OUT}.}$$

$$\Delta I_{OUT} = (Q_{CC}/V) \Delta V_{OUT} + \frac{L_{1}/V}{R_{1}} \Delta V_{OUT}$$ \hspace{1cm} (2-1)$$

$$Z_{OUT} = \frac{\Delta V_{OUT}}{\Delta I_{OUT}}$$ \hspace{1cm} (2-2)$$

$$Z_{OUT} = \frac{(Q_{CC}/V) \Delta V_{OUT} + (L_{1}/V) \Delta V_{OUT}}{R_{1}}$$ \hspace{1cm} (2-3)$$

$$Z_{OUT} = \frac{1}{(Q_{CC}/V) + (L_{1}/V) R_{1}}$$ \hspace{1cm} (2-4)$$

The LM340-5.0 data sheet lists maximum quiescent current change of 1.0 mA for a 7.0V to 25V change in input voltage; and a line regulation (interpolated for $I_{OUT} = 200$ mA) of 35 mV maximum for a 7.0V to 25V change in input voltage:

$$Q_{CC}/V = 1.0 \text{ mA} = 55 \mu\text{A/V} \hspace{1cm} (2-5)$$

$$L_{1}/V = 35 \text{ mV} = 2 \text{ mV/V} \hspace{1cm} (2-6)$$

The worst case change in the 200 mA output current for a 1.0V change in output or input voltage using equation 2-1 is:

$$\frac{\Delta I_{OUT}}{1.0V} = 55 \mu\text{A} + \frac{2 \text{ mV}}{25\Omega} = 135 \mu\text{A}$$ \hspace{1cm} (2-7)$$

and the output impedance for a 0 to 85Ω change in Z_{L} using equation 2-4 is:

$$Z_{OUT} = \frac{1}{55 \mu\text{A} + \frac{2 \text{ mV}}{25\Omega}} = 7.4 \text{ kΩ} \hspace{1cm} (2-8)$$

Typical measured values of Z_{OUT} varied from 10–12.3 kΩ, or 81–100 μA/V change input or output (approximately 0.05%/V).

3. HIGH CURRENT REGULATOR WITH SHORT CIRCUIT CURRENT LIMIT
The 15V regulator circuit of Figure 6 includes an external boost transistor to increase output current capability to 5.0A. Unlike the normal boosting methods, it maintains the LM340’s ability to provide short circuit current limiting and thermal shut-down without use of additional active components. The extension of these safety features to the external pass transistor Q1 is based on a current sharing scheme.

*Required if regulator is located far from power supply filter

FIGURE 5. Current Source
using R1, R2, and D1. Assuming the base-to-emitter voltage of Q1 and the voltage drop across D1 are equal, the voltage drops across R1 and R2 are equal. The currents through R1 and R2 will then be inversely proportional to their resistances. For the example shown on Figure 6, resistor R1 will have four times the current flow of R2. For reasonable values of Q1 beta, the current through R1 is approximately equal to the collector current of Q1; and the current through R2 is equal to the current flowing through the LM340. Therefore, under overload or short circuit conditions the protection circuitry of the LM340 will limit its own output current and, because of the R1/R2 current sharing scheme, the output current of Q1 as well. Thermal overload protection also extends Q1 when its heat sink has four or more times the capacity of the LM340 heat sink. This follows from the fact that both devices have approximately the same input/output voltage and share the load current in a ratio of four to one.

The circuit shown on Figure 6 normally operates at up to 5.0A of output current. This means up to 1.0A of current flows through the LM340 and up to 4.0A flows through Q1. For short term overload conditions the curve of Figure 7 shows the maximum instantaneous output current versus temperature for the boosted regulator. This curve reflects the approximately 2.0A current limit of the LM340 causing an 8.0A current limit in the pass transistor, or 10A, total.

Under continuous short circuit conditions the LM340 will heat up and limit to a steady total state short circuit current of 4.0A to 6.0A as shown in Figure 8. This curve was taken using a Wakefield 680-75 heat sink (approximately 7.5°C/W) at a 25°C ambient temperature.

For optimum current sharing over temperature between the LM340 and Q1, the diode D1 should be physically located close to the pass transistor on the heat sink in such a manner as to keep it at the same temperature as that of Q1. If the LM340 and Q1 are mounted on the same heat sink the LM340 should be electrically isolated from the heat sink since its case (pin 3) is at ground potential and the case of Q1 (its collector) is at the output potential of the regulator. Capacitors C1 and C2 are required to prevent oscillations and improve the output impedance respectively. Resistor R3 provides a path to unload excessive base charge from the base of Q1 when the regulator goes suddenly from full load to no load. The single point ground system shown on Figure 6 allows the sense pins (2 and 3) of the LM340 to monitor the voltage directly at the load rather than at some point along a (possibly) resistive ground return line carrying up to 5.0A of load current. Figure 9 shows the typical variation of load regulation versus load current for the boosted regulator. The insertion of the external pass transistor increases the input/output differential voltage from 2.0V to

FIGURE 6. 15V 5.0A Regulator with Short Circuit Current Limit

FIGURE 7. Maximum Instantaneous Current vs Junction Temperature

FIGURE 8. Continuous Short Circuit Current vs Input Voltage
approximately 4.5V. For an output current less than 5.0A, the R2/R1 ratio can be set lower than 4.1. Therefore, a less expensive PNP transistor may be used.

FIGURE 9. Load Regulation

4. 5.0V, 5.0A VOLTAGE REGULATOR FOR TTL

The high current 5.0V regulator for TTL shown in Figure 10 uses a relatively inexpensive NPN pass transistor with a lower power PNP device to replace the single, higher cost, power PNP shown in Figure 6. This circuit provides a 5.0V output at up to 5.0A of load current with a typical load regulation of 1.8% from no load to full load. The peak instantaneous output current observed was 10.4A at a 25°C junction temperature (pulsed load with a 1.0 ms ON and a 200 ms OFF period) and 8.4A for a continuous short circuit. The typical line regulation is 0.02% of input voltage change (\(I_{OUT} = 0\)).

One can easily add an overload indicator using the National’s new NSL5027 LED. This is shown with dotted lines in Figure 10. With this configuration R2 is not only a current sharing resistor but also an overload sensor. R5 will determine the current through the LED; the diode D2 has been added to match the drop across D1. Once the load current exceeds 5.0A (1.0A through the LM340 assuming perfect current sharing and \(V_{D1} = V_{D2}\)) Q3 turns ON and the overload indicator lights up.

Example:

\[
\begin{align*}
I_{OVERLOAD} &= 5.0A \\
I_{LED} &= 40 \text{ mA (light intensity of 16 mcd)} \\
V_{LED} &= 1.75, R_S = \frac{V_{IN} - 2.65}{I_{LED}} \\
\end{align*}
\]

5. ADJUSTABLE OUTPUT VOLTAGE REGULATOR FOR INTERMEDIATE OUTPUT VOLTAGES

The addition of two resistors to an LM340 circuit allows a non-standard output voltage while maintaining the limiting features built into IC. The example shown in Figure 11 provides a 10V output using an LM340K-5.0 by raising the reference (pin number 3) of the regulator by 5.0V.

FIGURE 10. 5.0V, 5.0A Regulator for TTL (with short circuit, thermal shutdown protection, and overload indicator)

FIGURE 11. 10V Regulator

The 5.0V pedestal results from the sum of regulator quiescent current \(I_Q\) and a current equal to \(V_{REG}/R_1\), flowing through potentiometer R2 to ground. R2 is made adjustable to compensate for differences in \(I_Q\) and \(V_{REG}\). The circuit is practical because the change in \(I_Q\) due to line voltage and load current changes is quite small.

The line regulation for the boosted regulator is the sum of the LM340 line regulation, its effects on the current through...
R2, and the effects of ΔI_Q in response to input voltage changes. The change in output voltage is:

$$\Delta V_{OUT} = (L/V) \Delta V_{IN} + \frac{(L/V) \Delta V_{IN} R2}{R1} + (Q_{CC}/V) \Delta V_{IN} R2$$

(5-1)

giving a total line regulation of:

$$\frac{\Delta V_{OUT}}{\Delta V_{IN}} = \frac{(L/V)}{1 + \frac{R2}{R1}} + \frac{\Delta V_{IN} R2}{R1} + \frac{(Q_{CC}/V) \Delta V_{IN} R2}{R1}$$

(5-2)

The LM340-5.0 data sheet lists $\Delta V_{OUT} < 50$ mV and $\Delta I_Q < 1.0$ mA for $\Delta V_{IN} - 18$ V at $I_{OUT} = 500$ mA. This is:

$$L/V = \frac{50 \text{ mV}}{18 \text{ V}} = 3 \text{ mV/V}$$

(5-3)

$$Q_{CC}/V = \frac{1.0 \text{ mA}}{18 \text{ V}} = 55 \mu \text{A/V}$$

(5-4)

The worst case at line regulation for the circuit of Figure 11 calculated by equation 5-2, $I_{OUT} = 500$ mA and $R2 = 3101 \Omega$ is:

$$\frac{\Delta V_{OUT}}{1.0 \text{ V}} = 3 \text{ mV/V} + \frac{3101 \Omega}{300 \Omega} \geq 3 \text{ mV/V} + 1 \Omega = 4 \text{ mV/V}$$

(5-5)

$$\frac{\Delta V_{OUT}}{1.0 \text{ V}} = 6 \text{ mV/V} + 17 \text{ mV/V} = 23 \text{ mV/V}$$

(5-6)

This represents a worst case line regulation value of 0.23% V/V.

The load regulation is the sum of the LM340 voltage regulation, its effect on the current through $R2$, and the effect of ΔI_Q in response to changes in load current. Using the following definitions and the notation shown on Figure 11 ΔV_{OUT} is:

$$Z_{OUT} = \text{Regulator output impedance: the change in output voltage per amp of load current change.}$$

$$\frac{\Delta V_{OUT}}{I_L} = \frac{(Z_{340}) \Delta I_L + \frac{(Z_{340})}{R2} \Delta I_L R2}{R2} + \frac{(Q_{CC}/A) \Delta I_L R2}{R2}$$

(5-7)

and the total output impedance is:

$$Z_{OUT} = \frac{\Delta V_{OUT}}{\Delta I_L} = \frac{1}{1 + \frac{R2}{R1}} + \frac{(Q_{CC}/A) R2}{R2}$$

(5-8)

The LM340-5.0 data sheet gives a maximum load regulation $L_r = 50$ mV and $\Delta I_Q = 1.0$ mA for a 1.0A load change.

$$Z_{340} = \frac{50 \text{ mV}}{1.0 \text{ A}} = 0.05 \Omega$$

(5-9)

$$Q_{CC}/A = \frac{1 \text{ mA}}{1.0 \text{ A}} - \frac{100 \mu A/A}{1.0 \text{ A}}$$

(5-10)

This gives a worst case dc output impedance (ac output impedance being a function of C^2) for the 10V regulator using equation 5-8 of:

$$Z_{OUT} = 0.05 \Omega \left(1 + \frac{300 \Omega}{3101 \Omega}\right) + (100 \mu A/A) \frac{3101 \Omega}{300 \Omega}$$

(5-11)

or a worst case change of approximately 1.5% for a 1.0A load change. Typical measured values are about one-third of the worst case value.

6. VARIABLE OUTPUT REGULATOR

In Figure 12 the ground terminal of the regulator is “lifted” by an amount equal to the voltage applied to the non-inverting input of the operational amplifier LM101A. The output

![Variable Output Regulator Diagram]
voltage of the regulator is therefore raised to a level set by the value of the resistive divider \(R_1/R_2/R_3 \) and limited by the input voltage. With the resistor values shown in Figure 12, the output voltage is variable from 7.0V to 23V and the maximum output current (pulsed load) varies from 1.2A to 2.0A \((T_j = 25^\circ \text{C})\) as shown in Figure 13.

\[V_{\text{OUT MAX}} = \frac{V_{\text{IN}} - V_{B}}{R_1} \quad (7-1) \]

If the LM324 is used instead of the LM101A, R3 can be omitted since its common mode voltage range includes the ground, and then the output will be adjustable from 5 to a certain upper value defined by the parameters of the system.

The circuit exhibits the short-circuit protection and thermal shutdown properties of the LM340 over the full output range.

The load regulation can be predicted as:

\[\Delta V_{\text{OUT}} = \frac{R_1 + R_2 + R_3}{R_1} \Delta V_{340} \quad (6-1) \]

where \(\Delta V_{340} \) is the load regulation of the device given in the data sheet. To insure that the regulator will start up under full load a reverse biased small signal germanium diode, 1N91, can be added between pins 2 and 3.

7. VARIABLE OUTPUT REGULATOR 0.5V–29V

When a negative supply is available an approach equivalent to that outlined in section 6 may be used to lower the minimum output voltage of the regulator below the nominal voltage that of the LM340 regulator device. In Figure 14 the voltage \(V_G \) at the ground pin of the regulator is determined by the drop across \(R_1 \) and the gain of the amplifier. The current \(I \) may be determined by the following relation:

\[I = \frac{V_{340} R_2 + R_5 - R_3 R_4}{R_3} + \frac{V_{IN}^-}{R_1} \quad \text{or if} \quad R_2 = R_3 \Rightarrow R_4 = R_5 \Rightarrow R \]

\[I = \frac{V_{340}}{R_1 R_4} + \frac{1}{R_1} (V_{IN}^- - V_{340}) \quad (7-2) \]

FIGURE 13. Maximum Output Current

Since the LM101A is operated with a single supply (the negative supply pin is grounded). The common mode voltage \(V_B \) must be at least at 2.0 \(V_{BE} + V_{SAT} \) above ground. R3 has been added to insure this when \(R_2 = 0 \). Furthermore the bias current \(I_B \) of the operational amplifier should be negligible compared to the current flowing through the resistive divider.

Example:

\[V_{\text{IN}} = 25V \]

\[V_{\text{OUT MIN}} = 5 + V_B, (R_2 = 0), \]

\[V_B = R_3 (I - I_B) = 2.0V \]

\[R_1 = 2.5 R_3 \]

\[V_{\text{OUT MAX}} = V_{\text{IN}} - \text{dropout volt.} \]

\(R_2 = R_{\text{MAX}} \)

\(R_{2\text{MAX}} = 0.3 R_1 \)

So setting R3, the values of R1 and R2 can be determined.

FIGURE 14. Variable Output Voltage 0.5V – 30V
considering that the output is given by:
\[V_{\text{OUT}} = V_G + V_{340} \]
(7-3)
and
\[V_G = R_{11} - V_{IN}^- \]
(7-4)
combining 7-2, 7-3, 7-4 an expression for the output voltage is:
\[V_{\text{OUT}} = \frac{R_2}{R_4} \]
(7-5)
Notice that the output voltage is inversely proportional to \(R_4 \)
so the output voltage may be adjusted very accurately for
low values. A minimum output of 0.5V has been set. This implies that
\[\frac{R_2}{R_4} - 0.1 \frac{R_3}{R_4} - 0.9 \frac{R_3}{R_2} - 9 \]
(7-6)
An absolute zero output voltage will require \(R_4 = \infty \) or \(R_2 = 0 \)
neither being practical in this circuit. The maximum output voltage as shown in Figure 14 is 30V if the high vol-
age operational amplifier LM143 is used. If only low values
of \(V_{\text{OUT}} \) are sought, then an LM101 may be used. \(R_1 \) can
be computed from:
\[R_1 = \frac{V_{IN}^-}{I_{Q340}} \]
(7-7)

Figure 15 illustrates the load regulation as a function of the
output voltage.

8. **DUAL POWER SUPPLY**

The plus and minus regulators shown in Figure 16 will exhib-
it line and load regulations consistent with their specifications
as individual regulators. In fact, operation will be ent-
tirely normal until the problem of common loads occurs. A
30V load from the +15V output to the –15V output (repre-
senting a 0.5A starting load for the LM340K-15 if the
LM320K-15 is already started) would allow start up of the
LM340 in most cases. To insure LM340 startup over the full
temperature range into a worst case 1.0A current sink load
the germanium power “diode” \(D_1 \) has been added to the
circuit. Since the forward voltage drop of the germanium
diode \(D_1 \) is less than that of the silicon substrate diode of
the LM340 the external diode will take any fault current and
allow the LM340 to start up even into a negative voltage
load. \(D_1 \) and silicon diode \(D_2 \) also protect the regulator out-
puts from inadvertent shorts between outputs and to
ground. For shorts between outputs the voltage difference
between either input and the opposite regulator output
should not exceed the maximum rating of the device.
The example shown in Figure 16 is a symmetrical ±15V
supply for linear circuits. The same principle applies to non-
symmetrical supplies such as a +5.0V and –12V regulator
for applications such as registers.

9. **TRACKING DUAL REGULATORS**

In Figure 17, a fraction of the negative output voltage “lifts”
the ground pins of the negative LM320K-15 voltage regula-
tor and the LM340K-15 through a voltage follower and an
inverter respectively. The dual operational amplifier LM1558
is used for this application and since its supply voltage may
go as high as ±22V the regulator outputs may be set be-
tween 5.0V and 20V. Because of the tighter output toler-
ance and the better drift of the LM320, the positive regulator
is made to track the negative. The best tracking action is
achieved by matching the gain of both operational amplifi-
ers, that is, the resistors \(R_2 \) and \(R_3 \) must be matched as
closely as possible.

Note: \(C_1 \) and \(C_2 \) required if regulators are located far from power supply filter.

Figure 16. Dual Power Supply

Figure 15. Typical Load Regulation for a 0.5V–30V Regulator (\(\Delta \text{V}_{\text{OUT}} = 1.0\text{A} \))
Indeed, with R2 and R3 matched to better than 1%, the LM340 tracks the LM320 within 40–50 mV over the entire output range. The typical load regulation at V\text{OUT} = \pm 15\,\text{V} for the positive regulator is 40 mV from a 0 to 1.0A pulsed load and 80 mV for the negative.

Figure 18 illustrates \pm 15\,\text{V} tracking regulator, where again the positive regulator tracks the negative. Under steady state conditions \(V_A \) is at a virtual ground and \(V_B \) at a \(V_{BE} \) above ground. \(Q_2 \) then conducts the quiescent current of the LM340. If \(-\text{V}_{\text{OUT}}\) becomes more negative the collector base junction of \(Q_1 \) is forward biased thus lowering \(V_B \) and raising the collector voltage of \(Q_2 \). As a result, \(+\text{V}_{\text{OUT}}\) rises and the voltage \(V_A \) again reaches ground potential.

Assuming \(Q_1 \) and \(Q_2 \) to be perfectly matched, the tracking action remains unchanged over the full operating temperature range.

With R1 and R2 matched to 1%, the positive regulator tracks the negative within 100 mV (less than 1%). The capacitor C4 has been added to improve stability. Typical load regulations for the positive and negative sides from a 0 to 1.0A pulsed load (\(t_{\text{ON}} = 1.0\,\text{ms}, t_{\text{OFF}} = 200\,\text{ms} \)) are 10 mV and 45 mV respectively.

10. HIGH INPUT VOLTAGE

The input voltage of the LM340 must be kept within the limits specified in the data sheet. If the device is operated...
above the absolute maximum input voltage rating, two failure modes may occur. With the output shorted to ground, the series pass transistor Q16 (see Figure 4) will go to avalanche breakdown; or, even with the output not grounded, the transistor Q1 may fail since it is operated with a collector-emitter voltage approximately 4.0V below the input.

If the only available supply runs at a voltage higher than the maximum specified, one of the simplest ways to protect the regulator is to connect a zener diode in series with the input of the device to level shift the input voltage. The drawback to this approach is obvious. The zener must dissipate $(V_{SUPPLY} - V_{IN\,MAX\,LM340}) \cdot (I_{OUT\,MAX})$ which may be several watts. Another way to overcome the over voltage problem is illustrated in Figure 19 where an inexpensive, NPN-zener-resistor, combination may be considered as an equivalent to the power zener. Since the input voltage of the regulator has been allowed to go as high as 80V, a level shifting transistor-zener (D2)—resistor combination has been added to keep the voltage across the LM340 under permissible values. The disadvantage of the system is the increased output noise and output voltage drift due to the added diodes.

Indeed it can be seen that, from no load to full load conditions, the ΔI_2 will be approximately the current through R1 ($= 35 \, mA$) and therefore the degraded regulation caused by D1 will be V_Z (at $35 \, mA + I_2$) $- V_Z$ (at I_2).

With an optional output capacitor the measured noise of the circuit was 700 μVp-p.

11. HIGH VOLTAGE REGULATOR

In previous sections the principle of “lifting the ground terminal” of the LM340, using a resistor divider or an operational amplifier, has been illustrated. One can also raise the output voltage by using a zener diode connected to the ground pin as illustrated in the Figure 21 to obtain an output level increased by the breakdown voltage of the zener. Since the input voltage of the regulator has been allowed to go as high as 80V a level shifting transistor-zener (D2)—resistor combination has been added to keep the voltage across the LM340 under permissible values. The disadvantage of the system is the increased output noise and output voltage drift due to the added diodes.
The measured load regulation was 60 mV for ΔV_{OUT} of 5.0 mA to 1.0A (pulsed load), and the line regulation is 0.01%V of input voltage change ($V_{OUT} = 500$ mA) and the typical output noise 2.0 mVp-p ($C2 = 0.1 \mu F$). The value of $R1$ is calculated as:

$$R1 = \left(\frac{V_{IN} - (V_{Z1} + V_{Z2})}{1 \text{ full load}}\right)$$ \hspace{1cm} (11-1)

12. ELECTRONIC SHUTDOWN

Figure 22 shows a practical method of shutting down the LM340 under the control of a TTL or DTL logic gate. The pass transistor Q1 operates either as a saturated transistor or as an open switch. With the logic input high (2.4V specified minimum for TTL logic) transistor Q2 turns on and pulls 50 mA down through R2. This provides sufficient base drive to maintain Q1 in saturation during the ON condition of the switch. When the logic input is low (0.4V specified maximum for TTL logic) Q2 is held off, as is Q1; and the switch is in the OFF condition. The observed turn-on time was 7.0 μs for resistive loads from 15Ω to infinity and the turn-off time varied from approximately 3.0 μs for a 15Ω load to 3.0 ms for a no-load condition. Turn-off time is controlled primarily by the time constant of R_{LOAD} and C1.

13. VARIABLE HIGH VOLTAGE REGULATOR WITH OVERVOLTAGE SHUTDOWN

A high voltage variable-output regulator may be constructed using the LM340 after the idea illustrated in section 7 and drawn in Figure 22. The principal inconvenience is that the voltage across the regulator must be limited to maximum.

FIGURE 22. Electronic Shutdown Circuit

*Required if the regulator is located far from the power supply filter
**Head sink Q1 and the LM340

FIGURE 23. Variable High Voltage Regulator with Shortcircuit and Overvoltage Protection

*Solid tantalum
rating of the device, the higher the applied input voltage the higher must be lifted the ground pin of the LM340. Therefore the range of the variable output is limited by the supply voltage limit of the operational amplifier and the maximum voltage allowed across the regulator. An estimation of this range is given by:

\[V_{\text{OUT MAX}} - V_{\text{OUT MIN}} \leq V_{\text{SUPPLY MAX}} - V_{\text{NOMINAL340}} - 2.0 \text{V} \quad (13-1) \]

Examples:
LM340-15: \[V_{\text{OUT MAX}} - V_{\text{OUT MIN}} = 35 - 15 = 20 \text{V} \]

Figure 23 illustrates the above considerations. Even though the LM340 is by itself short circuit protected, when the output drops, also \(V_A \) drops and the voltage difference across the device increases. If it exceeds 35V the pass transistor internal to the regulator will breakdown, as explained in section 11. To remedy this, an over-voltage shutdown is included in the circuit. When the output drops the comparator switches low, pulls down the base Q2 thus opening the switch Q1, and shutting down the LM340. Once the short circuit has been removed the LM311 must be activated through the strobe to switch high and close Q1, which will start the regulator again. The additional voltages required to operate the comparator may be taken from the 62V since the LM311 has a certain ripple rejection and the reference voltage (pin 3) may have a superimposed small ac signal. The typical load regulation can be computed from equation 6-1.

BIBLIOGRAPHY
1. AN-42: “IC Provides on Card Regulation for Logic Circuits.”

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.